Redox control of copper homeostasis in cyanobacteria.
نویسندگان
چکیده
Copper is essential for all living organisms but is toxic when present in excess. Therefore organisms have developed homeostatic mechanism to tightly regulate its cellular concentration. In a recent study we have shown that CopRS two-component system is essential for copper resistance in the cyanobacterium Synechocystis sp PCC 6803. This two-component regulates expression of a heavy-metal RND type copper efflux system (encoded by copBAC) as well as its own expression (in the copMRS operon) in response to an excess of copper in the media. We have also observed that both operons are induced under condition that reduces the photosynthetic electron flow and this induction depends on the presence of the copper-protein, plastocyanin. These findings, together with CopS localization to the thylakoid membrane and its periplasmic domain being able to bind copper directly, suggest that CopS could be involved in copper detection in both the periplasm and the thylakoid lumen.
منابع مشابه
Stress response in cyanobacteria
Cyanobacteria are an important source of natural products. In this article, we briefly review the responses of cyanobacteria to different stresses. Abiotic stresses (temperature, salt, heavy metals, metalloid and ultraviolet (UV) influence cell growth and metabolism in cyanobacteria. Salt stress is a major abiotic factor that decrease...
متن کاملRedox regulation of glycogen biosynthesis in the cyanobacterium Synechocystis sp. PCC 6803: analysis of the AGP and glycogen synthases.
Glycogen constitutes the major carbon storage source in cyanobacteria, as starch in algae and higher plants. Glycogen and starch synthesis is linked to active photosynthesis and both of them are degraded to glucose in the dark to maintain cell metabolism. Control of glycogen biosynthesis in cyanobacteria could be mediated by the regulation of the enzymes involved in this process, ADP-glucose py...
متن کاملZn, Cu and Co in cyanobacteria: selective control of metal availability.
Homeostatic systems for essential and non-essential metals create the cellular environments in which the correct metals are acquired by metalloproteins while the incorrect ones are somehow avoided. Cyanobacteria have metal requirements often absent from other bacteria; copper in thylakoidal plastocyanin, zinc in carboxysomal carbonic anhydrase, cobalt in cobalamin but magnesium in chlorophyll, ...
متن کاملCrosstalk between Cu(i) and Zn(ii) homeostasis via Atx1 and cognate domains† †Electronic supplementary information (ESI) available: Materials and methods, a figure showing gel filtration data and a table containing crystallographic data collection and processing statistics. See DOI: 10.1039/c3cc42709aClick here for additional data file.
The copper metallochaperone Atx1 and the N-terminal metal-binding domain of a copper-transporting ATP-ase can form tight Zn(II)-mediated hetero-complexes in both cyanobacteria and humans. Copper and zinc homeostasis could be linked by metal binding to these CXXC-containing proteins.
متن کاملMetals in Cyanobacteria: Analysis of the Copper, Nickel, Cobalt and Arsenic Homeostasis Mechanisms
Traces of metal are required for fundamental biochemical processes, such as photosynthesis and respiration. Cyanobacteria metal homeostasis acquires an important role because the photosynthetic machinery imposes a high demand for metals, making them a limiting factor for cyanobacteria, especially in the open oceans. On the other hand, in the last two centuries, the metal concentrations in marin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant signaling & behavior
دوره 7 12 شماره
صفحات -
تاریخ انتشار 2012